Problem

Source: IMO Shortlist 1993, India 4

Tags: modular arithmetic, number theory, relatively prime, partition, algebra, IMO Shortlist



a) Show that the set $ \mathbb{Q}^{ + }$ of all positive rationals can be partitioned into three disjoint subsets. $ A,B,C$ satisfying the following conditions: \[ BA = B; \& B^2 = C; \& BC = A; \] where $ HK$ stands for the set $ \{hk: h \in H, k \in K\}$ for any two subsets $ H, K$ of $ \mathbb{Q}^{ + }$ and $ H^2$ stands for $ HH.$ b) Show that all positive rational cubes are in $ A$ for such a partition of $ \mathbb{Q}^{ + }.$ c) Find such a partition $ \mathbb{Q}^{ + } = A \cup B \cup C$ with the property that for no positive integer $ n \leq 34,$ both $ n$ and $ n + 1$ are in $ A,$ that is, \[ \text{min} \{n \in \mathbb{N}: n \in A, n + 1 \in A \} > 34. \]