Problem

Source: IMO Shortlist 1993, India 1

Tags: limit, algebra, Sequence, recurrence relation, IMO Shortlist



Define a sequence $\langle f(n)\rangle^{\infty}_{n=1}$ of positive integers by $f(1) = 1$ and \[f(n) = \begin{cases} f(n-1) - n & \text{ if } f(n-1) > n;\\ f(n-1) + n & \text{ if } f(n-1) \leq n, \end{cases}\]for $n \geq 2.$ Let $S = \{n \in \mathbb{N} \;\mid\; f(n) = 1993\}.$ (i) Prove that $S$ is an infinite set. (ii) Find the least positive integer in $S.$ (iii) If all the elements of $S$ are written in ascending order as \[ n_1 < n_2 < n_3 < \ldots , \]show that \[ \lim_{i\rightarrow\infty} \frac{n_{i+1}}{n_i} = 3. \]