Problem

Source: APMO 1996

Tags: inequalities



Let $a$, $b$, $c$ be the lengths of the sides of a triangle. Prove that \[ \sqrt{a+b-c} + \sqrt{b+c-a} + \sqrt{c+a-b} \leq \sqrt{a} + \sqrt{b} + \sqrt{c} \] and determine when equality occurs.