Problem

Source: APMO 1990

Tags: LaTeX, algebra, polynomial, inequalities unsolved, inequalities



Let $a_1$, $a_2$, $\cdots$, $a_n$ be positive real numbers, and let $S_k$ be the sum of the products of $a_1$, $a_2$, $\cdots$, $a_n$ taken $k$ at a time. Show that \[ S_k S_{n-k} \geq {n \choose k}^2 a_1 a_2 \cdots a_n \] for $k = 1$, $2$, $\cdots$, $n - 1$.