let $ O$ be an arbitrary point in the space,and for any point $ X$ let $ x$ denote the vector from $ O$ to $ X$.let $ S = \{A,B,C\}$,$ \sigma_1 = a + b + c$ and $ \sigma_2 = a\cdot b + b\cdot c + c\cdot a$.define $ S',\sigma_1',\sigma_2'$ analogously in terms of $ A',B'$ and $ C'$.
given $ (P,P')\in S\times S'$.note that $ PP'^2 = |p|^2 - 2p\cdot p' + |p'|^2$.summing over all 9 possible pairs yields the total $ t$ with:
\begin{eqnarray*}t & = & \sum_{P\in S}3|p|^2+\sum_{P'\in S'}3|p'|^2-2\sigma_1\cdot\sigma_1' \\
& = & \sum_{P\in S}3|p|^2 + \sum_{P'\in S'}3|p'|^2 + \left(|\sigma_1 - \sigma_1'|^2 - |\sigma_1|^2 - |\sigma_1'|^2\right) \\
& \geq & \sum_{P\in S}3|p|^2 + \sum_{P'\in S'}3|p'|^2 - |\sigma_1|^2 - |\sigma_1'|^2 \\
& = & \left(\sum_{P\in S}2|p|^2 - 2\sigma_2\right) + \left(\sum_{P'\in S'}2|p'|^2 - 2\sigma_2'\right) \\
& = & |a - b|^2 + |b-c|^2 + |c - a|^2 + |a' - b'|^2 + |b' - c'|^2 + |c' - a'|^2 \\
& = & AB^2 + BC^2 + CA^2 + A'B'^2 + B'C'^2 + C'A'^2 \\
& \geq & 3(a^2 + a'^2)\end{eqnarray*}
thus one of the nine distances is greater or equal to:
$ \sqrt {\frac t9}\geq\sqrt {\frac {a^2 + a'^2}3}$
as desired.the equality case is never reached.because $ A,B$ and $ C$ do not all lie on a line,the nine values $ PP'^2$ we sum to find $ t$ cannot all be equal to each other.