Problem

Source: 7th RMM 2015, Problem 3

Tags: combinatorics proposed, combinatorics, RMM, algebra, algebra proposed



A finite list of rational numbers is written on a blackboard. In an operation, we choose any two numbers $a$, $b$, erase them, and write down one of the numbers \[ a + b, \; a - b, \; b - a, \; a \times b, \; a/b \text{ (if $b \neq 0$)}, \; b/a \text{ (if $a \neq 0$)}. \] Prove that, for every integer $n > 100$, there are only finitely many integers $k \ge 0$, such that, starting from the list \[ k + 1, \; k + 2, \; \dots, \; k + n, \] it is possible to obtain, after $n - 1$ operations, the value $n!$.