Let $O_1$ be a point in the exterior of the circle $\omega$ of center $O$ and radius $R$ , and let $O_1N$ , $O_1D$ be the tangent segments from $O_1$ to the circle. On the segment $O_1N$ consider the point $B$ such that $BN=R$ .Let the line from $B$ parallel to $ON$ intersect the segment $O_1D$ at $C$ . If $A$ is a point on the segment $O_1D$ other than $C$ so that $BC=BA=a$ , and if the incircle of the triangle $ABC$ has radius $r$ , then find the area of $\triangle ABC$ in terms of $a ,R ,r$.
Problem
Source:
Tags: geometry
Talisman
06.02.2015 12:12
The incircle of $\triangle ABC$ with center $I$ touches $BC$ at $E, F$ on $BC, OF \perp BC$
The line through $O \perp OO_1$ interests $O_1N,O_1D$ at $N',D'; \angle DOD'=\angle NON'=\angle FOE$
${\angle ICE=\frac12\angle O_1CB=45^\circ-\angle OO_1D=\angle O_1OD-45^\circ=\angle COD,\triangle ICE\sim\triangle COF}$
${\frac{CE}{IE}=\frac{OF}{CF},CE=\frac{rR}{a-R},
[ABC]=CE*\sqrt{BC^2-CE^2}=\frac{rR}{a-R}\sqrt{a^2-\left(\frac{rR}{a-R}\right)^2}.}$
Submathematics
06.02.2015 13:25
what does $ O\perp OO_1 $ mean?
MillenniumFalcon
21.02.2015 04:54
a line perpendicular to OO1 at O Can you explain why DOD'=NON'=FOE?