Problem

Source: Bulgaria MO 2000 Day 2 Problem 3

Tags: function, induction, vector, combinatorics proposed, combinatorics



Let $A$ be the set of all binary sequences of length $n$ and denote $o =(0, 0, \ldots , 0) \in A$. Define the addition on $A$ as $(a_1, \ldots , a_n)+(b_1, \ldots , b_n) =(c_1, \ldots , c_n)$, where $c_i = 0$ when $a_i = b_i$ and $c_i = 1$ otherwise. Suppose that $f\colon A \to A$ is a function such that $f(0) = 0$, and for each $a, b \in A$, the sequences $f(a)$ and $f(b)$ differ in exactly as many places as $a$ and $b$ do. Prove that if $a$ , $b$, $c \in A$ satisfy $a+ b + c = 0$, then $f(a)+ f(b) + f(c) = 0$.