Problem

Source: Bulgaria MO 2001 Day 2 Problem 2

Tags: algebra unsolved, algebra



Find all real values $t$ for which there exist real numbers $x$, $y$, $z$ satisfying : $3x^2 + 3xz + z^2 = 1$ , $3y^2 + 3yz + z^2 = 4$, $x^2 - xy + y^2 = t$.