Find all real values $t$ for which there exist real numbers $x$, $y$, $z$ satisfying : $3x^2 + 3xz + z^2 = 1$ , $3y^2 + 3yz + z^2 = 4$, $x^2 - xy + y^2 = t$.
Problem
Source: Bulgaria MO 2001 Day 2 Problem 2
Tags: algebra unsolved, algebra
vanstraelen
08.02.2015 14:17
Given $ 3x^{2}+3xz+z^{2} = 1 \quad\quad (1)$, $ 3y^{2}+3yz+z^{2} = 4 \quad\quad (2)$ and $ x^{2}-xy+y^{2} = t \quad\quad (3)$. Calculate $4(1)+4(2)-2(3)$: $4(3x^{2}+3xz+z^{2})+4(3y^{2}+3yz+z^{2})-2(x^{2}-xy+y^{2})=4+16-2t$, then $9x^{2}+12xz+4z^{2}+9y^{2}+12yz+4z^{2}+x^{2}+2xy+y^{2}=20-2t$ or $(3x+2z)^{2}+(3y+2z)^{2}+(x+y)^{2}=20-2t$, only if $20-2t \geq 0$.
Gh324
06.07.2018 23:17
...........
reeh_haan
05.08.2022 10:26
Assmit wrote: Solution is complete? i think so
RagvaloD
07.08.2022 01:42
No, it is not complete I think, problem has missed condition, that $x,y,z$ are positive numbers I found papers with solution here
Build points $O,A,B,C$ with $OA=\sqrt{3}{x},OB=\sqrt{3}y,OC=z$ and $\angle AOC=\angle BOC = \frac{5\pi}{6}$
$t \in ( \frac{3-\sqrt{5}}{2},1)$