Problem

Source: Bulgaria 1998 Problem 4

Tags: algebra unsolved, algebra



Let $a_1,a_2,\cdots ,a_n$ be real numbers, not all zero. Prove that the equation: \[\sqrt{1+a_1x}+\sqrt{1+a_2x}+\cdots +\sqrt{1+a_nx}=n\] has at most one real nonzero root.