Problem

Source: IMO 1989/4 , ISL 13, ILL 40

Tags: geometry, geometric inequality, convex quadrilateral, IMO, IMO 1989



Let $ ABCD$ be a convex quadrilateral such that the sides $ AB, AD, BC$ satisfy $ AB = AD + BC.$ There exists a point $ P$ inside the quadrilateral at a distance $ h$ from the line $ CD$ such that $ AP = h + AD$ and $ BP = h + BC.$ Show that: \[ \frac {1}{\sqrt {h}} \geq \frac {1}{\sqrt {AD}} + \frac {1}{\sqrt {BC}} \]