In triangle $ABC$, $\angle B = 2\angle C$. Let $P$ and $Q$ be points on the perpendicular bisector of segment $BC$ such that rays $AP$ and $AQ$ trisect $\angle A$. Prove that $PQ < AB$ if and only if $\angle B$ is obtuse.
Source: USA TST 2001
Tags: geometry, perpendicular bisector, geometry unsolved
In triangle $ABC$, $\angle B = 2\angle C$. Let $P$ and $Q$ be points on the perpendicular bisector of segment $BC$ such that rays $AP$ and $AQ$ trisect $\angle A$. Prove that $PQ < AB$ if and only if $\angle B$ is obtuse.