Problem

Source: 6th Grand Duchy of Lithuania contest

Tags: geometry, circumcircle, geometry proposed



An isosceles triangle $ABC$ with $AC = BC$ is given. Let $M$ be the midpoint of the side $AB$ and let $P$ be a point inside the triangle such that $\angle PAB = \angle PBC$. Prove that $\angle APM + \angle BPC = 180 \textdegree $