Problem

Source: European Mathematical Cup 2014, Junior Division, Problem 3

Tags: geometry, circumcircle, incenter, geometry unsolved



Let ABC be a triangle. The external and internal angle bisectors of ∠CAB intersect side BC at D and E, respectively. Let F be a point on the segment BC. The circumcircle of triangle ADF intersects AB and AC at I and J, respectively. Let N be the mid-point of IJ and H the foot of E on DN. Prove that E is the incenter of triangle AHF, or the center of the excircle. Proposed by Steve Dinh