Problem

Source: IMO LongList, Bulgaria 1, IMO 1977, Day 2, Problem 6

Tags: function, algebra, Functional inequality, functional equation, IMO, IMO 1977



Let $\mathbb{N}$ be the set of positive integers. Let $f$ be a function defined on $\mathbb{N}$, which satisfies the inequality $f(n + 1) > f(f(n))$ for all $n \in \mathbb{N}$. Prove that for any $n$ we have $f(n) = n.$