Problem

Source: IMO ShortList 1988, Problem 23, Singapore 2, Problem 69 of ILL

Tags: geometry, circumcircle, trigonometry, incenter, analytic geometry, IMO Shortlist



Let $ Q$ be the centre of the inscribed circle of a triangle $ ABC.$ Prove that for any point $ P,$ \[ a(PA)^2 + b(PB)^2 + c(PC)^2 = a(QA)^2 + b(QB)^2 + c(QC)^2 + (a + b + c)(QP)^2, \] where $ a = BC, b = CA$ and $ c = AB.$