Problem

Source:

Tags: geometry, circumcircle, trapezoid, geometric transformation, reflection, analytic geometry, vector



In acute triangle $ABC$, $AB > AC$. $D$ and $E$ are the midpoints of $AB$, $AC$ respectively. The circumcircle of $ADE$ intersects the circumcircle of $BCE$ again at $P$. The circumcircle of $ADE$ intersects the circumcircle $BCD$ again at $Q$. Prove that $AP = AQ$.