Since, It is given to us
\[
a,b,c,d < p
\]
Claim : $p$ doesn't divide both of $(ac+bd)$ and $(ad+bc)$
Proof : FTSOC, let us assume $p$ divides both
\[
\implies (ac+bd) - (ad + bc) = (a-b)(c-d)
\]But,
\[
(a-b)(c-d) \not\equiv 0 \pmod{p}
\]And this Proves our Claim!
Now, We see
\[
(ac+bd)(ad+bc) = (a^2 + b^2)cd + (c^2 + d^2)ab
\]and $p$ divides it, which is clearly visible
\[
\implies p \mid (a^2 + b^2)cd + (c^2 + d^2)ab
\]\[
\implies p \mid (ac+bd)(ad+bc)
\]Since, we have proved $p$ doesn't divide both of $(ac+bd)$ and $(ad + bc)$ and here we found $p$ divides $(ac+bd)(ad+bc)$
$\therefore$ $p$ divides any one of $(ac+bd)$ , $(ad+bc)$