Problem

Source: Baltic Way 2005/2

Tags: inequalities, trigonometry, algebra proposed, algebra



Let $\alpha$, $\beta$ and $\gamma$ be three acute angles such that $\sin \alpha+\sin \beta+\sin \gamma = 1$. Show that \[\tan^{2}\alpha+\tan^{2}\beta+\tan^{2}\gamma \geq \frac{3}{8}. \]