Problem

Source: Bulgarian NMO 2013, p6

Tags: number theory, Diophantine equation, number theory proposed



Given $m\in\mathbb{N}$ and a prime number $p$, $p>m$, let \[M=\{n\in\mathbb{N}\mid m^2+n^2+p^2-2mn-2mp-2np \,\,\, \text{is a perfect square} \} \] Prove that $|M|$ does not depend on $p$. Proposed by Aleksandar Ivanov