Problem

Source:

Tags: geometry, 3D geometry, tetrahedron, sphere, combinatorics proposed, combinatorics



A real number $f(X)\neq 0$ is assigned to each point $X$ in the space. It is known that for any tetrahedron $ABCD$ with $O$ the center of the inscribed sphere, we have : \[ f(O)=f(A)f(B)f(C)f(D). \] Prove that $f(X)=1$ for all points $X$. Proposed by Aleksandar Ivanov