Problem

Source: Taiwan 2014 TST2, Problem 6

Tags: geometry, circumcircle, geometric transformation, similar triangles, geometry proposed



Let $P$ be a point inside triangle $ABC$, and suppose lines $AP$, $BP$, $CP$ meet the circumcircle again at $T$, $S$, $R$ (here $T \neq A$, $S \neq B$, $R \neq C$). Let $U$ be any point in the interior of $PT$. A line through $U$ parallel to $AB$ meets $CR$ at $W$, and the line through $U$ parallel to $AC$ meets $BS$ again at $V$. Finally, the line through $B$ parallel to $CP$ and the line through $C$ parallel to $BP$ intersect at point $Q$. Given that $RS$ and $VW$ are parallel, prove that $\angle CAP = \angle BAQ$.