Let $a_i > 0$ for $i=1,2,\dots,n$ and suppose $a_1 + a_2 + \dots + a_n = 1$. Prove that for any positive integer $k$, \[ \left( a_1^k + \frac{1}{a_1^k} \right) \left( a_2^k + \frac{1}{a_2^k} \right) \dots \left( a_n^k + \frac{1}{a_n^k} \right) \ge \left( n^k + \frac{1}{n^k} \right)^n. \]
Problem
Source:
Tags: inequalities, calculus, derivative, function, n-variable inequality
18.07.2014 22:47
UM Jensen is like a instasolve
18.07.2014 23:21
I don't remember it being instant (the derivatives take some time to muck through), but yes, Jensen does happen to work...
18.07.2014 23:24
Yes once the derivative is calculated. I was just trying to say that the problem is not exact require any insight, just some elementary calculation.
19.07.2014 07:53
Does anybody have solutions?
19.07.2014 17:32
http://www.artofproblemsolving.com/Forum/viewtopic.php?f=52&p=3513124: $\sum_{i=1}^{n}x_i=k$,and $0<x_i\le\sqrt{2+\sqrt5}$,Show that\[\prod_{k=1}^{n}(x_i+\dfrac{1}{x_i})\ge(\dfrac{k}{n}+\dfrac{n}{k})^n\]
20.07.2014 08:16
I dont think sqing give the solution Sonce in the link that given there is range And the provlems donnot have any range
01.12.2014 02:50
By using Jensen's inequality, it is clear that this problem boils down to proving that $ f(x) = \text{ln}\left(x^k + x^{-k}\right) $ is a convex function on the interval $ [0, 1]. $ Note that $ f''(x) = \frac{n(4nx^{2n} + 1 - x^{4n})}{x^2(x^{2n} + 1)^2} > 0 $ for all $ x \in [0, 1] $ which implies the desired result.
28.08.2015 21:07
I think clearing the denominators and applying Lagrange Multipliers works fine.
13.10.2020 17:58
A bit cleaner, IMHO Taiwan 2014 Quizzes wrote: Let $a_i > 0$ for $i=1,2,\dots,n$ and suppose $a_1 + a_2 + \dots + a_n = 1$. Prove that for any positive integer $k$, \[ \left( a_1^k + \frac{1}{a_1^k} \right) \left( a_2^k + \frac{1}{a_2^k} \right) \dots \left( a_n^k + \frac{1}{a_n^k} \right) \ge \left( n^k + \frac{1}{n^k} \right)^n. \] My Solution: Claim: $f(x)=\log(x^k + x^{-k})$ is convex for $k \geqslant 1.$ Proof. $$f''(x) = -\dfrac{k\left(x^{4k}-4kx^{2k}-1\right)}{x^2\left(x^{2k}+1\right)^2} > 0$$for all $x\in(0,1).\quad\square$ Now, by Jensen we get: \begin{align*} \frac{\log\left(a_1^k+\frac{1}{a_1^k}\right)+\cdots+\log\left(a_n^k+\frac{1}{a_n^k}\right)}{n} &\geqslant \log\left(\frac{a_1^k+\frac{1}{a_1^k}+\cdots+a_n^k+\frac{1}{a_n^k}}{n}\right) \\&=\log\left(\frac{a_1^k+a_2^k\cdots+a_n^k}{n}+\frac{\frac{1}{a_1^k}+\frac{1}{a_2^k}+\cdots+\frac{1}{a_n^k}}{n}\right). \end{align*} Next, by Power Mean inequality applied to positive reals $\{a_1, a_2, \ldots, a_n\}$ with weights $\left\{\frac 1n, \frac 1n, \cdots, \frac 1n\right\}$, we have $\mathcal{P}(k) \geqslant \mathcal{P}(1)$, i.e.: $$\left(\frac{a_1^k+a_2^k\cdots+a_n^k}{n}\right)^{\frac 1k} \geqslant \left(\frac{a_1^1+a_2^1+\cdots+a_n^1}{n}\right)^{\frac 11} \implies \frac{a_1^k+a_2^k\cdots+a_n^k}{n} \geqslant \frac{1}{n^k}$$ Since $k>-1$, again by Power Mean applied to positive reals $\left\{\frac{1}{a_1}, \frac{1}{a_2}, \cdots, \frac{1}{a_n}\right\}$ with weights $\left\{\frac 1n, \frac 1n, \cdots, \frac 1n\right\}$, we have $\mathcal{P}(k) \geqslant \mathcal{P}(-1)$ i.e.: $$\left(\frac{\frac{1}{a_1^k}+\frac{1}{a_2^k}+\cdots+\frac{1}{a_n^k}}{n}\right)^{\frac 1k} \geqslant \left(\frac{\frac{1}{a_1^{-1}}+\frac{1}{a_2^{-1}}+\cdots+\frac{1}{a_n^{-1}}}{n}\right)^{\frac {1}{-1}} \implies \frac{\frac{1}{a_1^k}+\frac{1}{a_2^k}+\cdots+\frac{1}{a_n^k}}{n} \geqslant n^k$$So, we have $$\frac{a_1^k+a_2^k\cdots+a_n^k}{n} + \frac{\frac{1}{a_1^k}+\frac{1}{a_2^k}+\cdots+\frac{1}{a_n^k}}{n} \geqslant \left(n^k + \frac{1}{n^k}\right)$$$$\implies \log\left(\left(a_1^k+\frac{1}{a_1^k}\right)\left(a_2^k+\frac{1}{a_2^k}\right)\cdots\left(a_n^k+\frac{1}{a_n^k}\right)\right) \geqslant n\log\left(n^k+\frac{1}{n^k}\right) = \log\left(n^k+\frac{1}{n^k}\right)^n.\quad\blacksquare$$
17.10.2020 22:24
Let $f(x)=\ln\left(x^k+\frac1{x^k}\right)$. As a result, we need to prove that for any $n$ and $\sum_{i=1}^na_i=1$ that $$\prod_{i=1}^ne^{f(a_i)} \ge e^{f(n) \cdot n} = e^{f\left(\frac1n\right)\cdot n}=e^{f\left(\frac{\sum_{i=1}^na_i}{n}\right) \cdot n}$$which hints towards taking the $\ln$ of both sides (credits to Eyed for telling me this smart way of Jensen-ing a bunch of products of a function). Doing that and dividing both sides by $n$ gets we need to prove $$\frac{\sum_{i=1}^n f(a_i)}{n} \ge f\left(\frac{\sum_{i=1}^na_i}{n}\right)$$so if $f$ is convex, we are done. Taking the derivative of $f$ gets us that for a constant $k$, $$\frac{d}{dx}\ln\left(x^k+\frac{1}{x^k}\right) = \frac{k (-1 + x^{2 k})}{x + x^{1 + 2 k}}$$so the second derivative would be $$\frac{d}{dx}\left(\frac{k (-1 + x^{2 k})}{x + x^{1 + 2 k}}\right) = \frac{k (1 + 4 k x^{2 k} - x^{4 k})}{x^2 (1 + x^{2 k})^2}$$meaning since the bottom side is positive by trivial inequality and the top side is positive since $x^{4k} < 1$ if $0 < x < 1$ then the second derivative is positive meaning $f$ is convex, so as a result, $$\frac{\sum_{i=1}^n f(a_i)}{n} \ge f\left(\frac{\sum_{i=1}^na_i}{n}\right)$$which means that taking $e$ as the base and each side as an exponent gets $$\prod_{i=1}^n \left(a_i^k+\frac{1}{a_i^k} \right) \ge \left(n^k+\frac{1}{n^k} \right)^n$$for all positive real numbers $\sum_{i=1}^n = 1$ and positive integer $k$.
19.03.2021 03:03
We use a smoothing argument. Lemma: For $0 < a_p < a_q \le 1$ and $a_p + \varepsilon \le a_q - \varepsilon$, we have $$\left((a_p + \varepsilon)^k + \frac1{(a_p+\varepsilon)^k} \right) \left((a_q-\varepsilon)^k + \frac1{(a_q-\varepsilon)^k}\right) \le \left(a_p^k + \frac1{a_p^k} \right) \left(a_q^k + \frac1{a_q^k}\right).$$Proof: Note that if $0 < x < y \le 1$, we have $y^k + \frac1{y^k} \le x^k + \frac1{x^k}$. With this fact, the inequality follows by expansion since $0 < a_pa_q < (a_p + \varepsilon)(a_q - \varepsilon) \le 1$ and $0 < \frac{a_p}{a_q} < \frac{a_p + \varepsilon}{a_q - \varepsilon} \le 1$. Thus, through finitely many steps we can make all $a_i = \frac1n$ while the expression $\prod_{i=1}^n \left(a_i^k + \frac1{a_i^k}\right)$ monotonically decreases. At the state where all $a_i = \frac1n$, the desired inequality achieves equality, so we're done.
09.02.2022 09:55
Hehe headsolved. I don't understand why everyone is taking derivatives, but okay Claim: If $x+y<1$ then $(x^k+x^{-k})(y^k+y^{-k}) \ge ((\frac{x+y}{2})^k + (\frac{2}{x+y})^k)^2$ Proof: If we expand, we get $(xy)^k + (xy)^{-k} \ge ((\frac{x+y}{2})^{2})^k + ((\frac{x+y}{2})^{2})^{-k}$ which is true because $xy \le (\frac{x+y}{2})^{2} \le \frac 14$. Also, $(\frac xy)^k + (\frac xy)^{-k} \ge 2$ by AM-GM. The conclusion follows by smoothing.
10.02.2022 16:48
Trivial by Jensen is a thing Ok so we need $\ln \left(x+\frac{1}{x} \right)$ to be convex, so do the cancer operation on ur head (not writing it for the sake of my sanity) $$\frac{\text{d}^2}{\text{dx}^2} \ln \left(x+\frac{1}{x} \right)=\frac{-x^4+4x^2+1}{x^2(x^2+1)^2} \implies \; \text{that thing is convex on} \; [0,1]$$Since "that thing" is convex on $[0,1]$ we can use jensen to get $$\ln \left(a_1^k+\frac{1}{a_1^k} \right)+\ln \left(a_2^k+\frac{1}{a_2^k} \right)+ \cdots + \ln \left(a_n^k+\frac{1}{a_n^k} \right) \ge n \cdot \ln \left(n^k+\frac{1}{n^k} \right)$$And by elevating by $e$ we are done, equality if $a_1=a_2= \cdots =a_n=\frac{1}{n}$ thus we did it
19.03.2023 20:21
It suffices to show that $$\sum_{i=1}^n \log\left(a_i^k + \frac 1{a_i^k}\right) \geq n\log\left(n^k + \frac 1{n^k}\right).$$Notice that the second derivative of $\log\left(x^k+\frac 1{x^k}\right)$ is $$\frac{k(4kx^{2k} - x^{4k} + 1)}{x^{2k}(x^{2k}+1)^2} > 0\ \forall x \in (0, 1).$$Thus Jensen works.
08.12.2023 13:08
Since the two sides of the inequality are strictly positive, it suffices to show that : $$\sum_{i=1}^n \ln \left(a_i^k + \frac 1{a_i^k}\right) \geq n\ln\left(n^k + \frac 1{n^k}\right).$$ But this is trivial by Jensen's inequality since the second derivative of $f(x)=\ln ( x^k+\frac{1}{x^k})$ is equal to : $$f"(x)=\frac{k(4kx^{2k} - x^{4k} + 1)}{x^{2k}(x^{2k}+1)^2}$$which is positive for all $0<x<1$ $$\mathbb{Q.E.D.}$$
27.12.2023 10:48
We take $\ln$ both sides. Hence, it is enough to show that $$\sum_{i=1}^n \ln\left(a_i^k+\frac{1}{a_i^k}\right)\ge n\cdot\ln\left(n^k+\frac{1}{n^k}\right).$$Let $f(x)=\ln\left(x^k+\frac{1}{x^k}\right).$ We will now prove that $f(x)$ is convex. Indeed, we have $$f'(x)=\frac{1}{x^k+\frac{1}{x^k}}\cdot\frac{2k\cdot x^{2k-1}\cdot x^k-(x^{2k}+1)k\cdot x^{k-1}}{x^{2k}} = \frac{k(x^{2k}-1)}{x(x^{2k}+1)}$$and hence $$f''(x)=\frac{k(-x^{4k}+4kx^{2k}+1)}{x^2(x^{2k}+1)^2}.$$ We will prove that $x^{4k}-4kx^{2k}-1\le 0$ for every positive integer $k$ and $x\in(0,1).$ Indeed, let $t=x^{2k}.$ Hence, we get $$t^2-4kt-1\le0\Leftrightarrow 2k-\sqrt{4k^2+1}\le t=x^{2k}\le 2k+\sqrt{4k^2+1}.$$However, $2k-\sqrt{4k^2+1}<0$ and $2k+\sqrt{4k^2+1}>1>x^{2k}>0$ since $x\in(0,1)$, so we are done. It now follows that $f''(x)\ge 0$ for every positive integer $k$ and $x\in(0,1)$. Hence, $f(x)$ is convex and we can apply Jensen. We have $$f(a_1)+f(a_2)+\dots+f(a_n)\ge n\cdot f\left(\frac{1}{n}\right)=n\cdot \ln\left(\frac{1}{n^k}+n^k\right),$$so we are done. Equality occurs when $a_1=a_2=\dots=a_n=\frac{1}{n}.$