In triangle $ABC$, $I$ is the centre of the incircle. There is a circle tangent to $AI$ at $I$ which passes through $B$. This circle intersects $AB$ once more in $P$ and intersects $BC$ once more in $Q$. The line $QI$ intersects $AC$ in $R$. Prove that $|AR|\cdot |BQ|=|P I|^2$
Problem
Source: Dutch Tst 2014 P3
Tags: geometry proposed, geometry
18.07.2014 00:04
Very nice problem Sketch of proof:
18.07.2014 04:42
Any solution without harmonic or inversion???
18.07.2014 06:02
Inversion is overkill maybe
18.07.2014 06:30
Since $AI$ is the tangents of $(PIQ)$ so $\angle PIA= \angle PBI= \angle IBQ= \angle \tfrac{PIR}{2}= \angle AIR$. This follows $\triangle API = \triangle ARI \; ( \text{A.S.A})$. We get $IP=IR$. We also have $BI$ is the bisector of $\angle PBQ$ so $PI=IQ$. Thus, $PI=IA=IR$. On the other hand, it is easy to see that $\triangle BQI \sim \triangle IPA \; ( \text{A.A})$ so $\triangle BQI \sim \triangle IRA$. Hence $\tfrac{BQ}{IR}= \tfrac{QI}{RA}$. Therefore $BQ \cdot AR= IQ \cdot IR=IP^2.$ $\blacksquare$
27.03.2020 19:11
Only similar triangles: APİ and ARİ congruent(1) APİ~ABİ~İQB (2)