Find all functions $f:\mathbb{R}\backslash\{0\}\rightarrow\mathbb{R}$ for which $xf(xy) + f(-y) = xf(x)$ for all non-zero real numbers $x, y$.
Problem
Source: Dutch BxMO/EGMO Team Selection Test 2014 P2
Tags: function, algebra proposed, algebra
Source: Dutch BxMO/EGMO Team Selection Test 2014 P2
Tags: function, algebra proposed, algebra
Find all functions $f:\mathbb{R}\backslash\{0\}\rightarrow\mathbb{R}$ for which $xf(xy) + f(-y) = xf(x)$ for all non-zero real numbers $x, y$.