Problem

Source: USA TSTST 2014, Problem 4

Tags: algebra, polynomial, vector, floor function, modular arithmetic, pigeonhole principle, linear algebra



Let $P(x)$ and $Q(x)$ be arbitrary polynomials with real coefficients, and let $d$ be the degree of $P(x)$. Assume that $P(x)$ is not the zero polynomial. Prove that there exist polynomials $A(x)$ and $B(x)$ such that: (i) both $A$ and $B$ have degree at most $d/2$ (ii) at most one of $A$ and $B$ is the zero polynomial. (iii) $\frac{A(x)+Q(x)B(x)}{P(x)}$ is a polynomial with real coefficients. That is, there is some polynomial $C(x)$ with real coefficients such that $A(x)+Q(x)B(x)=P(x)C(x)$.