Problem

Source: European Mathematical Cup 2013, Junior Division, P2

Tags: geometry, geometry proposed



Let $P$ be a point inside a triangle $ABC$. A line through $P$ parallel to $AB$ meets $BC$ and $CA$ at points $L$ and $F$, respectively. A line through $P$ parallel to $BC$ meets $CA$ and $BA$ at points $M$ and $D$ respectively, and a line through $P$ parallel to $CA$ meets $AB$ and $BC$ at points $N$ and $E$ respectively. Prove \begin{align*} [PDBL] \cdot [PECM] \cdot [PFAN]=8\cdot [PFM] \cdot [PEL] \cdot [PDN] \\ \end{align*} Proposed by Steve Dinh