Problem

Source: IMO 1968 B2

Tags: function, algebra, periodic function, functional equation, IMO, IMO 1968



Let $f$ be a real-valued function defined for all real numbers, such that for some $a>0$ we have \[ f(x+a)={1\over2}+\sqrt{f(x)-f(x)^2} \] for all $x$. Prove that $f$ is periodic, and give an example of such a non-constant $f$ for $a=1$.