Find all functions $f: \mathbb{Q}^+ \to \mathbb{R}^+ $ with the property: \[f(xy)=f(x+y)(f(x)+f(y)) \,,\, \forall x,y \in \mathbb{Q}^+\] Proposed by Nikolay Nikolov
Problem
Source:
Tags: function, induction, limit, geometric series, algebra solved, algebra
29.05.2014 15:35
dgrozev wrote: Find all functions $f: \mathbb{Q}^+ \to \mathbb{R}^+ $ with the property: \[f(xy)=f(x+y)(f(x)+f(y)) \,,\, \forall x,y \in \mathbb{Q}^+\] Let $P(x,y)$ be the assertion $f(xy)=f(x+y)(f(x)+f(y))$ Let $a=f(1)$ $P(1,1)$ $\implies$ $f(2)=\frac 12$ $P(2,1)$ $\implies$ $f(3)=\frac 1{2a+1}$ $P(3,1)$ $\implies$ $f(4)=\frac 1{2a^2+a+1}$ $P(4,1)$ $\implies$ $f(5)=\frac 1{2a^3+a^2+a+1}$ $P(2,3)$ $\implies$ $f(6)=f(5)(f(2)+f(3))$ $P(5,1)$ $\implies$ $f(5)=f(6)(f(1)+f(5)$ and so $(f(2)+f(3))(f(1)+f(5))=1$ Using values got previously in this equation and simplifying, we get $(a-1)(a+1)(2a-1)(2a^2+a+1)=0$ and so $a\in\{\frac 12,1\}$ 1) If $a=1$ ========= $P(n,1)$ $\implies$ $\frac 1{f(n+1)}=\frac 1{f(n)}+1$ and a simple induction gives $f(n)=\frac 1n$ $P(x+n,1)$ $\implies$ $\frac 1{f(x+n+1}=1+\frac 1{f(x+n)}$ and a simple induction gives then $f(x+n)=\frac{f(x)}{nf(x)+1}$ $P(x,n)$ $\implies$ $f(nx)=\frac{f(x)}n$ and so $f(\frac pq)=\frac qp$ and so : $\boxed{\text{S1 : }f(x)=\frac 1x\text{ }\forall x\in\mathbb Q^+}$ which indeed is a solution. 2) If $a=\frac 12$ ============== $P(x,1)$ $\implies$ $f(x+1)=\frac{2f(x)}{2f(x)+1}$ and a simple induction implies $f(n)=\frac 12$ This also implies $f(x+2)=\frac {4f(x)}{6f(x)+1}$ and $f(x+4)=\frac{16f(x)}{30f(x)+1}$ Then $P(x,2)$ $\implies$ $f(2x)=\frac{2f(x)(2f(x)+1)}{6f(x)+1}$ and $P(2x,2)$ $\implies$ $f(4x)=\frac{4f(x)(2f(x)+1)(8f(x)^2+10f(x)+1)}{(6f(x)+1)(24f(x)^2+18f(x)+1)}$ But $P(x,4)$ $\implies$ $f(4x)=\frac{8f(x)(2f(x)+1)}{30f(x)+1}$ Equating these two expressions of $f(4x)$, we get $(2f(x)-1)^2(12f(x)+1)=0$ and so : $\boxed{\text{S2 : }f(x)=\frac 12\text{ }\forall x\in\mathbb Q^+}$ which indeed is a solution.
30.05.2014 13:09
Now let's make this more challenging (and this was the original problem of Nikolai Nikolov): same question with rational numbers replaced with positive real numbers.
31.05.2014 15:32
Yes, the author of the problem is Nikolay Nikolov. It was given at the competition in the form as it have been posted here. To the extent that I have seen, the more complicated version was: Find all functions $ f: \mathbb{R}^+ \to \mathbb{R}$ with the same property.
31.05.2014 16:09
Let's find the functions $f:(0,\infty)\to \mathbf{R}$ such that \[f(xy)=f(x+y)(f(x)+f(y)).\] This is the original version of the problem, apparently submitted to IMO last year and rejected since considered too hard. My solution is pretty long. Step 1: Let $Z$ be the set of zeros of $f$ and suppose that $S$ is nonempty and $f$ is not the zero map. Observe that: 1) If $x,y\in S$, then $xy\in S$. 2) If $x\in S$, then $u\in S$ for all $u\in (0, x^2/4]$. Indeed, for any such $u$ we can find $0<y<x$ such that $ u=y(x-y)$ and then $f(u)=f(x)(f(y)+f(x-y))=0$. Hence, if $x\in S$ and $n\geq 1$, then $(0, x^{2n}/4]\subset S$. If $x>1$, then by choosing $n$ very large we obtain that $(0, A]\subset S$ for all $A>0$, so $f=0$, contradiction. Hence $S\subset (0, 1]$. Observation 2) above shows that we can find $y_1<y_2$ in $S$. Set $x=y_2/y_1>1$, so that $f(y_2)=f(xy_1)=f(x+y_1)f(x)\ne 0$ (because $x>1$ and $x+y_1>1$), a contradiction. This shows that if $f$ vanishes at some point, then $f$ is the zero map. From now on I will suppose that $f$ is not the zero map. Since $f(1)=2f(2) f(1)$, we have $f(2)=1/2$. Step 2. I claim that $f(1)\in \{1, -1, 1/2\}$. Let $\alpha=f(1)\ne 0$ and suppose that $\alpha\ne 1, 1/2$. Set $x_n=1/f(n)$. Taking $x=n, y=1$, we obtain $f(n)=f(n+1)(f(n)+\alpha)$, hence $x_{n+1}=1+\alpha x_n$. This gives us explicit values for $x_n$ in terms of $\alpha$. In particular, we find $x_3=1+2\alpha$, $x_5=1+\alpha+\alpha^2+2\alpha^3$ and $x_6=1+\alpha+\alpha^2+\alpha^3+2\alpha^4$. Now, we have \[f(6)=f(2\cdot 3)=f(5)( 1/2+f(3)).\] Writing this in terms of $x_3, x_5, x_6$ and using the above formulae we arrive at the nasty equation \[ 3\alpha^3+\alpha^2+\alpha= 4\alpha^5+1.\] This factors as \[ (\alpha^2-1)(2\alpha-1)(2\alpha^2+\alpha+1)=0\] and finishes the proof of step $2$. Step 3. We consider the case $f(1)=1$. Then $f(x+1)=\frac{f(x)}{f(x)+1}$ (take $y=1$), so $f(x+2)=\frac{f(x)}{2f(x)+1}$. Taking $y=2$ we obtain \[f(2x)=f(x+2)(f(x)+1/2)=\frac{f(x)}{2}.\] Taking $y=x$ and using the previous relation we also obtain $f(x^2)=f(x)^2$. In particular $f(x)>0$ for all $x$. Next, by induction we have $f(x+n)=\frac{f(x)}{nf(x)+1}<\frac{1}{n}$ and $f(n)=1/n$. which shows that $f(x)\leq 1/n$ for $x\geq n$. Hence for all $x\geq 1$ we have $f(x)\leq 1/[x]$. But then for all $x>1$ we have \[f(x)^{2^n}=f(x^{2^n})\leq 1/[x^{2^n}].\] Taking the $2^n$th root and passing to the limit we finally obtain $f(x)\leq 1/x$ for $x\geq 1$. But since $f(2^n x)= f(x)/2^n$, we get $f(x)\leq 1/x$ for all $x\geq 2^{-n}$ and this for all $n$, hence $f(x)\leq 1/x$ for all $x$. Combined with the relation \[ 1=f(1)= f(x+1/x)(f(x)+f(1/x))\] this immediately implies $f(x)=1/x$ for all $x$. So we get another solution, the map $x\to 1/x$, unique solution for which $f(1)=1$. Step 4. We consider the case $f(1)=1/2$. This time $f(x+1)= \frac{f(x)}{f(x)+1/2}$ and by induction we get \[f(x+n)=\frac{2^n f(x)}{2 (2^n-1) f(x)+1},\] in particular $f(n)=1/2$ for positive integers $n$ and $\lim_{n\to\infty} f(x+n)=1/2$. Next, we have $f(nx)= f(x+n)(f(x)+1/2)$, and this tends to $ 1/2 (f(x)+1/2)$ when $n\to\infty$. Hence for all positive integers $m$ we have \[ 1/2 ( f(mx)+1/2)=\lim_{n\to\infty} f(mnx)=\lim_{n\to\infty} f(nx)= 1/2(f(x)+1/2),\] hence $f(mx)=f(x)$ for all $x$ and all positive integers $m$. Making again $m\to\infty$ we obtain $f(x)=\lim_{m} f(mx)= 1/2 (f(x)+1/2)$, hence $f(x)=1/2$ for all $x$. This gives another solution to the problem. Step 5. I consider the case $f(1)=-1$ and I claim that there is no solution in this case. Now, we have $f(x+1)= \frac{f(x)}{f(x)-1}$ and replacing $x$ by $x+1$ we obtain $f(x)=f(x+2)$. This gives in particular $f(4)=f(2)=1/2$ and also \[ f(2x)= f(x+2)(f(x)+1/2)=f(x) (f(x)+1/2), f(4x)=f(x+4)(f(x)+1/2)=f(x) (f(x)+1/2).\] Hence $f(2x)=f(4x)$ for all $x$ and so $f(x)=f(2x)=f(x)(f(x)+1/2)$ for all $x$, which gives $f(x)+1/2=1$ for all $x$, a contradiction.
25.07.2014 12:47
Yes Harazi you are right , it proposed to the last year IMO , and I don't know why it not selected , As I see this try to define function g(x)= 1/f(x) ....My approach is same as you except for finding f(1) , which I used Geometric series ..... . After this problem this problem was proposed to Brazilian math Olympiads http://www.artofproblemsolving.com/Forum/viewtopic.php?f=38&t=559598&p=3256076&hilit=Brazil+2013#p3256076 and Also this problem proposed to ELMO-2012 (Apparently before the propositions to the IMO). http://www.artofproblemsolving.com/Forum/viewtopic.php?p=2728445&sid=e8a07fecc683143cc542e3537478bec5#p2728445
29.10.2024 16:11
Let $g(x) = \frac{1}{f(x)}$ - then we work with $g(xy)((g(x)+g(y)) = g(x+y)g(x)g(y)$. In particular, $g(x+1) = 1 + \frac{g(x)}{g(1)}$, so with $a=g(1)$ we obtain $g(2) = 2$, $g(3) = 1 + \frac{2}{a}$, $g(4) = 1 + \frac{1}{a} + \frac{2}{a^2}$, $g(5) = 1 + \frac{1}{a} + \frac{1}{a^2} + \frac{2}{a^3}$ and $g(6) = 1 + \frac{1}{a} + \frac{1}{a^2} + \frac{1}{a^3} + \frac{2}{a^4}$. On the other hand, $x=3$ with $y=2$ yield $g(6) = \frac{g(2)g(3)g(5)}{g(2) + g(3)} = \frac{2\left(1+\frac{2}{a}\right)\left(1 + \frac{1}{a} + \frac{1}{a^2} + \frac{2}{a^3}\right)}{3+\frac{2}{a}}$. Equating the expressions for $g(6)$ leads to $(a-1)(a-2)(a+1)(a^2+a+2) = 0$, thus (as $a>0$) $a=1$ or $a=2$. If $a=1$, then $g(x+1) = g(x) + 1$, so $g(n) = n$ for all positive integers $n$ by induction. Now setting $y = \frac{x}{x-1}$ (so that $xy=x+y$) yields $g\left(1 + \frac{1}{x-1}\right)g(x) = g\left(1 + \frac{1}{x-1}\right) + g(x)$, thus $g\left(1 + \frac{1}{m}\right) = 1 + \frac{1}{m}$ for any positive integer $m$, which with $g(x+1) = g(x) + 1$ implies $g\left(k + \frac{1}{m}\right) = k + \frac{1}{m}$ for all non-negative integers $k$. Finally, for any positive rational number $\frac{p}{q}$, setting $x=p$ and $y=\frac{1}{q}$ now yields $g\left(\frac{p}{q}\right) = \frac{p}{q}$. Therefore $g(x) = x$ and hence $f(x) = \frac{1}{x}$ for all $x$. If $a=2$, then $g(x+1) = 1 + \frac{g(x)}{2}$, so $g(n) = 2$ for all positive integers $n$ by induction. Now setting $y = \frac{x}{x-1}$ (so that $xy=x+y$) yields $g\left(1 + \frac{1}{x-1}\right)g(x) = g\left(1 + \frac{1}{x-1}\right) + g(x)$, thus $g\left(1 + \frac{1}{m}\right) = 2$ for any positive integer $m$, which with $g(x+1) = 1 + \frac{g(x)}{2}$ implies $g\left(k + \frac{1}{m}\right) = 2$ for all non-negative integers $k$. Finally, for any positive rational number $\frac{p}{q}$, setting $x=p$ and $y=\frac{1}{q}$ now yields $g\left(\frac{p}{q}\right) = 2$. Therefore $g(x) = 2$ and hence $f(x) = \frac{1}{2}$ for all $x$.