Problem

Source: 2011 Sharygin Geometry Olympiad #6

Tags: geometry unsolved, geometry



Two unit circles $\omega_1$ and $\omega_2$ intersect at points $A$ and $B$. $M$ is an arbitrary point of $\omega_1$, $N$ is an arbitrary point of $\omega_2$. Two unit circles $\omega_3$ and $\omega_4$ pass through both points $M$ and $N$. Let $C$ be the second common point of $\omega_1$ and $\omega_3$, and $D$ be the second common point of $\omega_2$ and $\omega_4$. Prove that $ACBD$ is a parallelogram.