Problem

Source:

Tags:



A rook stands in a corner of an $n$ by $n$ chess board. For what $n$, moving alternately along horizontals and verticals, can the rook visit all the cells of the board and return to the initial corner after $n^2$ moves? (A cell is visited only if the rook stops on it, those that the rook “flew over” during the move are not counted as visited.) Proposed by A. Spivak