Problem

Source: Middle European Mathematical Olympiad 2013 I-1

Tags: inequalities proposed, inequalities



Let $ a, b, c$ be positive real numbers such that \[ a+b+c=\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} . \] Prove that \[ 2(a+b+c) \ge \sqrt[3]{7 a^2 b +1 } + \sqrt[3]{7 b^2 c +1 } + \sqrt[3]{7 c^2 a +1 } . \] Find all triples $ (a,b,c) $ for which equality holds.