a) There are 8 teams in a Quidditch tournament. Each team plays every other team once without draws. Prove that there exist teams $A,B,C,D$ such that pairs of teams $A,B$ and $C,D$ won the same number of games in total. b) There are 25 teams in a Quidditch tournament. Each team plays every other team once without draws. Prove that there exist teams $A,B,C,D,E,F$ such that pairs of teams $A,B,$ $~$ $C,D$ and $E,F$ won the same number of games in total.
Problem
Source: Kyiv mathematical festival 2014
Tags: combinatorics proposed, combinatorics, Kyiv mathematical festival