Problem

Source: AllRussian-2014, Grade 9, day1, P4

Tags:



Let $M$ be the midpoint of the side $AC$ of acute-angled triangle $ABC$ with $AB>BC$. Let $\Omega $ be the circumcircle of $ ABC$. The tangents to $ \Omega $ at the points $A$ and $C$ meet at $P$, and $BP$ and $AC$ intersect at $S$. Let $AD$ be the altitude of the triangle $ABP$ and $\omega$ the circumcircle of the triangle $CSD$. Suppose $ \omega$ and $ \Omega $ intersect at $K\not= C$. Prove that $ \angle CKM=90^\circ $. V. Shmarov