Problem

Source: All Russian 2014 Grade 10 Day 1 P2

Tags: function, algebra, Russia, Functional inequality



Given a function $f\colon \mathbb{R}\rightarrow \mathbb{R} $ with $f(x)^2\le f(y)$ for all $x,y\in\mathbb{R} $, $x>y$, prove that $f(x)\in [0,1] $ for all $x\in \mathbb{R}$.