mathuz wrote:
if $a^2+b^2+c^2+d^2=1$ prove that \[ (1-a)(1-b)\ge cd. \]
A. Khrabrov
we know $\frac{c^{2}+d^{2}}{2}\geq cd$ so we must prove that :
$a^{2}+b^{2}+1+2ab\geq 2a+2b\Leftrightarrow (a+b-1)^{2}\geq 0$
mathuz wrote:
if $a^2+b^2+c^2+d^2=1$ prove that \[ (1-a)(1-b)\ge cd. \]
See here:
http://www.artofproblemsolving.com/Forum/viewtopic.php?f=151&t=111267