Problem

Source: IMO ShortList 1973, Sweden 2, IMO 1973, Day 1, Problem 3

Tags: algebra, polynomial, roots, minimum value, IMO, IMO 1973, coefficients



Determine the minimum value of $a^{2} + b^{2}$ when $(a,b)$ traverses all the pairs of real numbers for which the equation \[ x^{4} + ax^{3} + bx^{2} + ax + 1 = 0 \] has at least one real root.