Problem

Source: USA TST 2003

Tags: pigeonhole principle, floor function, algebra unsolved, algebra



For a pair of integers $a$ and $b$, with $0 < a < b < 1000$, set $S\subseteq \{ 1, 2, \dots , 2003\}$ is called a skipping set for $(a, b)$ if for any pair of elements $s_1, s_2 \in S$, $|s_1 - s_2|\not\in \{ a, b\}$. Let $f(a, b)$ be the maximum size of a skipping set for $(a, b)$. Determine the maximum and minimum values of $f$.