Problem

Source: 2002 USA TST

Tags: algebra, modular arithmetic, binomial theorem, number theory, Summation, Hi



Let $p>5$ be a prime number. For any integer $x$, define \[{f_p}(x) = \sum_{k=1}^{p-1} \frac{1}{(px+k)^2}\] Prove that for any pair of positive integers $x$, $y$, the numerator of $f_p(x) - f_p(y)$, when written as a fraction in lowest terms, is divisible by $p^3$.