Problem

Source: IMO Shortlist 1993, Vietnam 1

Tags: linear algebra, matrix, algebra, system of equations, IMO Shortlist



Solve the following system of equations, in which $a$ is a given number satisfying $|a| > 1$: $\begin{matrix} x_{1}^2 = ax_2 + 1 \\ x_{2}^2 = ax_3 + 1 \\ \ldots \\ x_{999}^2 = ax_{1000} + 1 \\ x_{1000}^2 = ax_1 + 1 \\ \end{matrix}$