Problem

Source: Bulgarian Math Olympiad MO 2004, problem 6

Tags: induction, number theory unsolved, number theory



Let $ p$ be a prime number and let $ 0\leq a_{1}< a_{2}<\cdots < a_{m}< p$ and $ 0\leq b_{1}< b_{2}<\cdots < b_{n}< p$ be arbitrary integers. Let $ k$ be the number of distinct residues modulo $ p$ that $ a_{i}+b_{j}$ give when $ i$ runs from 1 to $ m$, and $ j$ from 1 to $ n$. Prove that a) if $ m+n > p$ then $ k = p$; b) if $ m+n\leq p$ then $ k\geq m+n-1$.