Problem

Source: IMO Shortlist 1993, Georgia 1

Tags: function, algebra, equation, IMO Shortlist



HIDE: $a > 0$ and $b$, $c$ are integers such that $ac$ – $b^2$ is a square-free positive integer P. For example P could be $3*5$, but not $3^2*5$.

Let $f(n)$ be the number of pairs of integers $d, e$ such that $ad^2 + 2bde + ce^2= n$. Show that$f(n)$ is finite and that $f(n) = f(P^{k}n)$ for every positive integer $k$. Original Statement: Let $a,b,c$ be given integers $a > 0,$ $ac-b^2 = P = P_1 \cdots P_n$ where $P_1 \cdots P_n$ are (distinct) prime numbers. Let $M(n)$ denote the number of pairs of integers $(x,y)$ for which \[ ax^2 + 2bxy + cy^2 = n. \]Prove that $M(n)$ is finite and $M(n) = M(P_k \cdot n)$ for every integer $k \geq 0.$ Note that the "$n$" in $P_N$ and the "$n$" in $M(n)$ do not have to be the same.