Problem

Source: IMO Shortlist 1994, G3

Tags: geometry, circumcircle, inradius, symmetry, incenter, IMO Shortlist



A circle $ C$ has two parallel tangents $ L'$ and$ L"$. A circle $ C'$ touches $ L'$ at $ A$ and $ C$ at $ X$. A circle $ C"$ touches $ L"$ at $ B$, $ C$ at $ Y$ and $ C'$ at $ Z$. The lines $ AY$ and $ BX$ meet at $ Q$. Show that $ Q$ is the circumcenter of $ XYZ$