Problem

Source: IMO Shortlist 1988, Problem 7, IMO Longlist 10

Tags: algebra, polynomial, modular arithmetic, number theory, Divisibility, IMO Shortlist



Let $ a$ be the greatest positive root of the equation $ x^3 - 3 \cdot x^2 + 1 = 0.$ Show that $ \left[a^{1788} \right]$ and $ \left[a^{1988} \right]$ are both divisible by 17. Here $ [x]$ denotes the integer part of $ x.$