Problem

Source:

Tags: symmetry, combinatorics unsolved, combinatorics



Let $U=\{1, 2,\ldots, 2014\}$. For positive integers $a$, $b$, $c$ we denote by $f(a, b, c)$ the number of ordered 6-tuples of sets $(X_1,X_2,X_3,Y_1,Y_2,Y_3)$ satisfying the following conditions: (i) $Y_1 \subseteq X_1 \subseteq U$ and $|X_1|=a$; (ii) $Y_2 \subseteq X_2 \subseteq U\setminus Y_1$ and $|X_2|=b$; (iii) $Y_3 \subseteq X_3 \subseteq U\setminus (Y_1\cup Y_2)$ and $|X_3|=c$. Prove that $f(a,b,c)$ does not change when $a$, $b$, $c$ are rearranged. Proposed by Damir A. Yeliussizov, Kazakhstan