Problem

Source: PAMO 2007 Q1

Tags: modular arithmetic, number theory unsolved, number theory



Find all natural numbers $N$ consisting of exactly $1112$ digits (in decimal notation) such that: (a) The sum of the digits of $N$ is divisible by $2000$; (b) The sum of the digits of $N+1$ is divisible by $2000$; (c) $1$ is a digit of $N$.