Problem

Source: Turkey National Olympiad Second Round 2013 P1

Tags: geometry, circumcircle, geometric transformation, reflection, symmetry, cyclic quadrilateral, similar triangles



The circle $\omega_1$ with diameter $[AB]$ and the circle $\omega_2$ with center $A$ intersects at points $C$ and $D$. Let $E$ be a point on the circle $\omega_2$, which is outside $\omega_1$ and at the same side as $C$ with respect to the line $AB$. Let the second point of intersection of the line $BE$ with $\omega_2$ be $F$. For a point $K$ on the circle $\omega_1$ which is on the same side as $A$ with respect to the diameter of $\omega_1$ passing through $C$ we have $2\cdot CK \cdot AC = CE \cdot AB$. Let the second point of intersection of the line $KF$ with $\omega_1$ be $L$. Show that the symmetric of the point $D$ with respect to the line $BE$ is on the circumcircle of the triangle $LFC$.