Problem

Source: Singapore TST 2004

Tags: number theory solved, number theory



Let $p \geq 5$ be a prime number. Prove that there exist at least 2 distinct primes $q_1, q_2$ satisfying $1 < q_i < p - 1$ and $q_i^{p-1} \not\equiv 1 \mbox{ (mod }p^2)$, for $i = 1, 2$.