Problem

Source: http://www.artofproblemsolving.com/Forum/viewtopic.php?f=270

Tags: modular arithmetic, number theory, greatest common divisor, number theory proposed, Contest 8



Given a prime $p$, consider integers $0<a<b<c<d<p$ such that $a^4\equiv b^4\equiv c^4\equiv d^4\pmod{p}$. Show that \[a+b+c+d\mid a^{2013}+b^{2013}+c^{2013}+d^{2013}\]