Problem

Source: Bulgaria 1998 (round 4)

Tags: algebra, polynomial, algebra unsolved



The polynomials $P_n(x,y), n=1,2,... $ are defined by \[P_1(x,y)=1, P_{n+1}(x,y)=(x+y-1)(y+1)P_n(x,y+2)+(y-y^2)P_n(x,y)\] Prove that $P_{n}(x,y)=P_{n}(y,x)$ for all $x,y \in \mathbb{R}$ and $n $.